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S U M M A R Y  
A Liapunov functional is proposed for the stability analysis of coupled-core nuclear reactors. Subsequently a set of 
stability criteria and stability regions in function space are determined. The method is more powerful than those 
relying on the use of ordinary Liapunov functions. 

1. Introduction 

Coupled-core reactors consist of several independently subcritical cores. The neutronic 
coupling between them makes the entire system critical. Due to the time delays caused by 
neutron transport between cores, the reactor is described by a differential equation with 
retarded arguments of the form 

a(t) = f [u(t), u(t- T,) . . . . .  u ( t -  Tk)] (a) 
where the T~ are positive constants. If r is the maximum of all T~, i=  1 . . . .  , k, then the solutions 
of (1) can be considered as trajectories in C = C( [ - r ,  0], E")which denotes the space of con- 
tinuous functions with domain [ -  r, 0] and range in E", the real Euclidean space of n-vectors. 
If u(t, (p) is a solution of (1) with initial condition q~ in C at t=0 ,  then the state at time t is 
denoted by 

ut(O)=u(t+O, cp ), -r<<_O<_O, and ut(O)~C. 

A proper extension of concepts in Liapunov theory leads to the construction of regions of 
stability in C for eqn. (1). A detailed discussion of the application of Liapunov functionals to 
equations of the considered type is given by Hale [1]. 

2. The Selection of a Liapunov Functional 

A point reactor model with one group of delayed neutrons in each one of N cores yields the 
following set of reactor equations (see Weaver, [4]). 

N % . A t -  rO (2.1) P' n,(t) - /~ n,(t)+ 2C,(t) + Z 7 it,(t) = -A -A 
j = l  

fl hi(t)- 2C,(t) (2.2) C,(t) = 

1 
~(t) = -~i ni(t)-aiTi(t) i= 1 . . . . .  N (2.3) 

where % = eji > 0 is the coupling coefficient between the i th and the j th core and T u = Tji the 
delay time associated with this coupling. The reactivity pl in the i th core is assumed to depend 
on the neutron density n~ and a temperature T~, the latter satisfying a temperature-power 
relation (2.3). The variables that translate the system operating point to zero are 
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x,  = ( , , - n , o ) / n , o  ; y ,  = ( Q - C , o ) / C , o  ; zi = ( r ~ -  ~o)/r~o 

of = p,o+h,(x,, =,), h,(o, o )=  o 

where n~o, C~o, T~o and Pw are the power level, delayed neutron precursor density, average core 
temperature and reactivity of the i th  core at equilibrium. Using the shorthand notations 

x~ = x,( t )  �9 x m j =  x j ( t - r u ) ;  njo au = bk~u ; b /~ 
' nio A A 

and 
hi(x,, z,) = - fl ( kpi x, + k,, z,) 

where kp, > 0 and kti > 0 represent reactivity feedback effects directly proportional to neutron 
density and to temperature, the kinetic equations (2) become 

N N 

Yci= -b(kpixi+k,,z,)(l + xi)-bxi+by, - b  Z kcijxi+b Z k~ijxJr,j (3.1) 
j = l  j = l  
j~i j~i 

3~, = 2 ( x , -  y~) (3.2) 

~ = a,(x,-  z~) i= 1 .. . . .  N . (3.3) 

Let V be a continuous scalar .function on C, of the form 

N N IO 

V =  2 ( KliX2§ Z Vii xZ(t+O) dO" 

Choosing vij=bKlik~ij, Kaiai=bKuka, 2Kzi=bKli, and selecting Kli such that Kljk~ji= 
K~k~j, which is satisfied for K ~ =  n2o, one finds after some manipulations 

V =  E n20 2 §  §  2 + E x 2(t+O) dO, 
i=~ a, ,,;=1 A J - r , j  

N N 
(1= - b  Z ni~176 2-2b  Z n20x2(k,ixi+kazi+kp i) 

i,/=1 A i=1 
i~j 

N N 
k,, n,o z, - 2b E n2o (x , -  y,)2, - 2 b ~  2 2 

i = l  i=1 

where the derivative has been taken along the solutions of (3). V will be used as a Liapunov 
functional for eqn. (3). 

3. Reactivity Feedback Proportional to Neutron Density 

In this case ka = 0 and 12 is negative semidefmite, since x~ > - 1. For  ~p ~ C and l el sufficiently 
small we have 

N 
g(~0) >=~Zl~o(0)12 = ~2 ~ ( x ~ + y ~ + z p ) .  

i = l  

Furthermore one readily sees that the largest invariant set where 17= 0, consists of the union 
of the full power equilibrium state (x~ = yi = zi = 0) and the null power equilibrium state (x~ = 
Yi = z/= - 1). Hence using a result by Hale [1] we have 

Theorem i. All trajectories approach either the equilibrium state at full power or the equilibrium 
state at zero power as t-~ + oo. 

This result implies that sustained oscillations in the reactor system are impossible. Next let 
us try to estimate the region of attraction of the operating point. In the appendix a sufficient 
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condition is found in order that no trajectory approaches the zero power equilibrium state, 
yielding the following 

Theorem 2. If for at least one value of i (1N iN N) 

N 

k,i > Z kcij (4) 
j = l  
j ~ i  

then all trajectories, except the zero power equilibrium state, approach the full power equilibrium 
state as t ~ + oe. 

If no value of i can be found such that (4) is satisfied, a region of attraction of the operating 
point can be constructed by estimating the value of V at null power. One has 

V n u l l p  . . . .  = R~ = =~t hi2~ 1 + + ni~176 Tij, 
i= i , j = l  A 

i~=j 

from which we find 

Theorem 3. The set V < R o in C is a region of attraction of the full power equilibrium state. 

4. Reactivity Feedback Governed by Newton's Law of Cooling 

Now it is assumed that ktir for at least one i. Consider the set 

V N R 1 (5) 

Then afortiori 

nZo (x 2 + bkti z 2) <. R , .  
ai / 

If R~i is the minimum of n20 (x 2 + bkt~ z{/a~) on the set q~ = kvl xg + kaz ~ + kv~ = 0, and R1 is the 
minimum of Rli, i= 1 . . . . .  N, then (5) is a region of attraction of the operating point. Ra can be 
determined using the method of Lagrange multipliers. One finds 

R 1 = min n20 k~+-~ilcti/b" 
i = 1  . . . . .  N 

So we have 

Theorem 4. The set V< R 1 is a region of attraction of the full power equilibrium state. 

5. Example 

Consider a reactor consisting of two identical cores, operating at the same power level. We have 

"f ~ 1 V = n g i : l  ] + 2 y  { + _ z  + A  -Tx~(t+O)dO 

Rl=nokp/ k~ + 

The region of stability can be visualized by intersecting it with q~ (0)= q~ (0)= constant; Yi = 0, 
i=1,  2; z2=x2=0 .  

The result is a projection of the stability region on the z l - x l  plane. 

+ x~+--z~__<k, k:+ 
a 
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The projection is shown in fig. 1 for the case kp = k c -~- ]~t = 1, b/a = 0.1 and for eT/A = b T =  0 and 
0.2. The result can be improved using Willems' [2] method of open Liapunov surfaces. We 
shall apply the method to the present example. On the set ~1 = x l  + zl + 1 = 0 we find 

~i = ;va +2 i  = ( 2 a - b ) x l + a + b + b y l + b x z r  

> ( 2 a - b ) x l + a - b .  

Similarly on the set ~ 2 = x 2 + z 2 +  1 = 0  we have 4~ 2 > ( 2 a - b ) x 2 + a - b .  Let 

Xlo = - ( a ' b ) / ( 2 a - b )  Z,o = - ( l + x i o ) =  - a / ( 2 a - b )  i= 1, 2 

RE= n2o x~ + - z =- n~(a2-ab+bg)/(2a-b) 2. 
a 

Apparently no trajectory can leave the set 7J=(V<Rz,  ~ >0,  ~2 >0). All trajectories 
starting inside 7 ~ approach the full power equilibrium state. The projection of ~ on the zl-x~ 
plane is also shown in fig. 1. 

Figure 1. Projection of stability regions on z t - x  1 plane. 

The method can be extended to models having several groups of delayed neutrons and 
reactivity feedback effects depending on several temperatures in each core. 

6. Conclusion 

A Liapunov functional has been given for the determination of stability regions for coupled- 
core reactor systems. These regions are defined as subsets of the space of n-dimensional vector 
functions over the domain [ - r ,  0]. The results are substantially better than those obtained 
with ordinary Liapunov functions, as given by Murray [3] and Weaver [4]. 

7. Appendix 

Suppose there exists a solution approaching the null power equilibrium state as t--, + oe. Then 
for any e > 0, sufficiently small, and any x~ (i= 1 . . . . .  N) a time to can be found such that 

x,(to) = - 1 + e (6) 

xi(t) < - l + s  f o r a l l t > t o .  
N o w  
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& + ~Pi >= - b  kp, x, + kc, ( l+xi)  
j = l  

>__ 0 t > t o  

if I el sufficiently small and (4) is satisfied. Hence x~ + (b/X)y~ is non-decreasing for t > to and 
approaches - 1 -(b/2) as t ~  + oe. It follows that 

b b 
x ~ + x  y~ < - 1  2 t > t o  

Hence 

b(y , -x , )  > = by~+b(~  y , + l  + ~ )  

=>b 1 + ~  y~+l) 

>_0 
and 

j e t  

j~ i  
> 0  t > t  o 

which contradicts (6). 
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